ITS — IOTAG message switch

Ver 1.0 Page 1 of 11

History

Datum Version | Kommentar
2006-01-10 |10 Initial document
Ver 1.0 Page 2 of 11

Technical overview - example

Message flows thru the ITS process

Ver 1.0 Page 3 of 11

ITS description

ITS handle message flow on tcp/ip socket (streaming) and $receive (message — based).

ITS is multithreaded non-stop process, implemented as watch-dog, due to unrecoverable socket error
while it running on a non parallel tcp/ip stack. On a backup taker over, there might be outstanding,
not served client request, they must reconnect after the backup process become primary, start a new
backup and finally reinitialized its listen port.

General tree switching message type supported.

$receive request: That is: when an non-stop process open, write or writeread and finally
close or when the serverclass_send_ procedure is used. This switching message type is used
when a process what to send and receive messages to/from a network connected system,
example a windows server. A non-stop host application is in this case a requester.

socket-to-pathway-server request: When a Unix application, by using socket sends a
request and receives reply to/from a pathway server in to a say, cobol server in a the non-
stop system.

socket-client-to-socket-server request: There is a web application, sending a request to
a server class in the non-stop system, there might be many instances or active server
processes running, then if the request will cause the server to produce more data than what
could be sent thru $receive,(due to its 60k limit) in one interaction, it could need many
request/replies before all data is sent to the requesting client. If using $receive, in these
cases, both the client and server needs to be context safe, the developer has to build that
logic into the code. Now if using this message switch technique, this is no longer a issue.
ITS will shortcut a free server to a requesting client. Until either the client or server
disconnect this connection will exist.

There is a timeout if no messages is send, if this timer expires, both server and client gets
disconnected. The server has then to reinitiate and wait for next request.

ITS process must be started and its listen port opened before any request can successfully be
processed by it.

Ver 1.0

Page 4 of 11

ITS interfaces - $receive

Each request must use the following structure when using this switch message type.

name: type: description:
total_message_len char[6] User by ITS and the receiving to calculate message length
trans_code char[4] User defined transaction code. See reserved codes.
return_code char[4] User defined reply code. See ITS reply codes.
user_trans_key char[16] User defined transaction key.
pathway_mon char[8] Name of the sending Pathway monitor, if any. ex. “$pwy”
pathway_svr char[16] Name of the sending Pathway server, if any. ex. “my-svr”
its_ip_adress char[16] Address of this system. ex:”192.168.0.100"
its_ip_port char[6] ITS listen port. ITS connects to remote servers using this.
its_remote_server char[3] Number to remote server, from host-file, number in bold.
user_data char[220] User defined field.
#
Hosts file for ITS. USED INTERNALLY FOR ROUTING -
#
<192.168.0.101/001> # SERVER 1
<192.168.0.102/002> # SERVER 2
<192.168.0.103/003> # SERVER 3
<192.168.0.104/004 > # SERVER 4

SERVER 5

<192.168.0.245/008/$PWY/SRV >

r

ITS, after have this message received, cretate a client socket, connect to the remote servers ip
address. (ITS uses it's own listen port to connect on), send the buffer, wait for reply and finally,
CALL REPLYX to reply the message back to the originator.

The package contains an example written in ¢, that show how to do this.

Ver 1.0 Page 5 of 11

ITS interfaces — socket-to-pathway-server-request

Each request must use the following structure when using this switch message type.

name: type: description:

total_message_len char[6] User by ITS and the receiving to calculate message length
trans_code char[4] User defined transaction code. See reserved codes.
return_code char[4] User defined reply code. See ITS reply codes.
pathway_mon char[8] Name of the receiving Pathway monitor, ex. “$pwy”
pathway_svr char[16] Name of the receiving Pathway server, ex. “my-svr”
user-data charfll] Variable length user buffer

This is conventional request, where ITS, after receiving the client message, perform a
SERVERCLASS_SEND_NW call, to the pathway monitor and server specified by the caller.
This called server class now, after received a message on its on $receive, can start process and reply.

Ver 1.0 Page 6 of 11

ITS interfaces — socket-client-to-server-socket-request

Each request must use the following structure when using this switch message type.

name: type: description:

total_message_len char[6] User by ITS and the receiving to calculate message length
trans_code char[4] User defined transaction code. See reserved codes.
return_code char[4] User defined reply code. See ITS reply codes.
function_code char[4] User defined function code. See ITS function codes.
user-data charfll] Variable length user buffer.

This message handling was invented due to cumbersome context handling when client and server had
reason to do several interactions between them before a transaction would become complete. ITS
now handle this issue.

server-specifics:
When a socket-server starts, its send all the function codes it handles to ITS, they are then saved in

internal memory structures within ITS. When done sending function codes, the server send ‘I-am
ready-to-receive request transaction message code. Now the server wait for requests.

client-specific:

In the connect to ITS, the client set the transaction code and function code to get-me-a-free-server
for-this-function-code request. ITS searches one, if match the request is processed, else client
receives error message in the return code.

example:
server ITS client

- connect to its

- send tree msg’s

- total length = 18 bytes (000018)
transaction code=7010
return code=0000
function code=3010
function code=3011
function code=3012

- send wait for request
transaction code=7012
return code=0000
function code=0000

send functions-I-can-handle --->
"000018701000003010” accept & reply
*000018701000003011” accept & reply
"000018701000003012” accept & reply
*000018701200000000" accept & no reply
<- send request
000031701800003011<xml>122</xml>
find the server
<- send request to server
process and send the request back -->
000058701800003011 <xml-data><tagl1>123456</tagl></xml-data>

Ver 1.0 Page 7 of 11

ITS transaction codes

Reserved transaction code:

7000 ITS internal

7002 "

7003 A

7010 Used by socket servers to send function codes
7012 Used by socket servers to send ready request
7014 ITS internal

7016 "

7018 Used by socket server and client when exchange data
Reply codes:

6000 Header len not numeric

6002 Illegal len in header

6004 Message code not numeric

6008 Message not defined

6014 Message buffer too small

6200 Max num. curr. active sock

6202 Max num. curr. $receive

6312 Undefined event state

6316 Undefined remote server

7405 Remote server, from ITSHOST file not found

Ver 1.0 Page 8 of 11

ITS setup

PC steps:
- Unzip the file ITS.zip you've downloaded.

- FTP transfer all files to your nsk system in ascii mode, except these with extension .100 or .700

- FTP transfer files with extension .100 or .700 in binary mode to the nsk host.

- Make sure all files reside in the same sub volume, if not modify the PWCONF and PWSTART files,
to reflect specific disc names etc.

Host steps:
- FUP ALTER ITS, CODE 700

- If your TCP/IP process is not $ZTCO, change ITSR and/or PWCONF
- Select the port for ITS to use for listen, default is 3400.
- Home term for ITS is set to $VHS, make sure this virtual home-term-process exists.

Ver 1.0 Page 9 of 11

ITS supported operating system

Currently the only supported operating system is nonstop kernel nsk.
Porting to Unix and Linux is being considered.

Ver 1.0 Page 10 of 11

ITS license

ITS is not freeware, its free to evaluate for maximum six(6) month after the evaluation period, a
license fee must be paid.
The fee is based on the number of concurrent sessions.

ITS uses a license key file for this, where it holds the system name , expire date and number of
session.

Ver 1.0 Page 11 of 11

